Microscale Energy Storage Devices

Presenter: Javen Lin 07/29/2014

1

Why Microsupercapacitors?

3D Graphene/CNTs for Microsupercapacitors

Jian Lin

Microsupercapacitors Fabrication

J. Lin, et al. Nano Lett. 2013, 1, 72-78

Rate Capacity of 3D G/CNTs Microsupercapacitors (G/CNT-MCs)

J. Lin, et al. Nano Lett. 2013, 13 (1), 72-78

Results: • Rectanç

- Rectangular shape of CV curves up to 400 V/s: ideal double layer capacitors
- Ultrahigh rate of **500 V/s** was achieved in G/CNCs-MCs.

Comparison of Electrochemical Performance of 3D G/CNTs MCs in Aqueous and Organic Electrolytes

aluminum electrolytic capacitor in terms of energy density

J. Lin, et al. Nano Lett. 2013, 13 (1), 72-78

Laser-induced Porous Graphene (LIG) from Polymers for Microsupercapacitors

J. Lin *et al.*, 2014, under review Z. Peng*, **J. Lin*** *et al.*, 2014, to be submitted Z. Peng, *et al.*, 2014, to be submitted

7

LIG: High Porosity and Good Quality

LIG: Highly Wrinkled and Mesoporous Structures

Stable LIG with Small Pore Size and High Surface Area

Quality Control of LIGs with Different Laser Power

Electrochemical Performance of LIG Microsupercapacitors

Results:

- Over 4 mF/cm² at scan rate of 20 mV/s, higher than laser-scribe GO based microsupercapacitors (~2.4 mF/cm² from Ref. "Nat. Commun. 2013, 4, 1475")
- Maintain good capacitive behaviors at I_{discharge} of 25 mA/cm².

Other Electrochemical Performance

Relation of Structures and Electrochemical Performance

Aberration-corrected TEM image

Ultra-nanocrystalline features

Density function theory calculation:

Jian Lin

Solid-state and Flexible Microsupercapacitors

Solid-state and Flexible Supercapacitors—Sandwiched Structure

RICE[®]

Z. Peng*, J. Lin* et al., 2014, to be submitted